Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(x3, x0)
P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(b1(x2), a1(a1(b1(x1))))
P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

The TRS R consists of the following rules:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(x3, x0)
P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(b1(x2), a1(a1(b1(x1))))
P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

The TRS R consists of the following rules:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(x3, x0)
P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

The TRS R consists of the following rules:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(x3, x0)
The remaining pairs can at least be oriented weakly.

P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))
Used ordering: Polynomial interpretation [21]:

POL(P2(x1, x2)) = x1 + x2   
POL(a1(x1)) = x1   
POL(b1(x1)) = x1   
POL(p2(x1, x2)) = 2 + 2·x1 + 2·x2   

The following usable rules [14] were oriented:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

P2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> P2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

The TRS R consists of the following rules:

p2(p2(b1(a1(x0)), x1), p2(x2, x3)) -> p2(p2(b1(x2), a1(a1(b1(x1)))), p2(x3, x0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.